EFFECT OF GARCINIA CAMBOGIA AND ST. JOHN’S WORT (HYPERICUM PERFORATUM) EXTRACTS ON OBESITY IN MALE RATS

By
Reham A. Arafat
Nutrition and Food Sciences Department
Faculty of Home Economics
Helwan University

Research Journal Specific Education
Faculty of Specific Education
Mansoura University

ISSUE NO. 44, OCTOBER. 2016
Effect Of Garcinia Cambogia and St. John's Wort (Hypericum Perforatum) Extracts on Obesity in Male Rats

Reham A. Arafat*

Abstract

This study was conducted to assess the effect of Garcinia Cambogia and H. Perforatum extracts on Obesity in male rats. The experiment was performed in 35 mature male rats distributed into 5 equal groups. Group (1) was kept as a normal control (fed on a basal diet), while rats of the other four groups were fed on a high-fat- diet for 6 weeks to induce obesity. Rats of the group (2) were left as a control positive (obese) and those of groups (3), (4) and (5) were orally given Garcinia Cambogia and H. Perforatum and their mixture in a dose of 400 mg/kg B.wts., respectively, for 4 weeks. At the end of the experiment, all rats were sacrificed and blood samples were collected for estimating serum liver enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), Alkaline phosphatase (ALP), total cholesterol (TC), triglycerides (TG) and lipoprotein fractions as well as blood urea nitrogen (BUN), uric acid and creatinine concentrations. Estimation of serum levels of thyroxin, insulin and leptin as well as histopathology of liver and kidneys were also carried out. The results showed that the two herbs extract and their mixture were significantly decreased serum levels of AST, ALT, ALP, TC, TG, LDL-c, BUN and uric acid concentrations as well as decreased leptin level, on the other hand, it increased levels of thyroxin, insulin as well as alleviated the histopathological changes which seen in the liver and kidneys of obese rats. In conclusion, intake of Garcinia Cambogia and H. Perforatum may be useful in the treatment of obesity and for patients who suffer from hyperlipidemia.

Keywords: Garcinia Cambogia, St. John's Wort, Liver enzymes, kidney function, Lipid profile, Hormones, Histopathology.

* Nutrition and Food Sciences Department, Faculty of Home Economics, Helwan University
Effect of Garcinia Cambogia and St. John’s Wort (Hypericum perforatum) Extracts on Obesity

Introduction

Obesity is now the most prevalent nutritional disease and a growing public health problem worldwide. The disease has acquired epidemic proportions projected to reach 2.3 billion of overweight adults and 700 million obese adults, respectively, by 2015 (Malik et al., 2013). Obesity is often associated with dyslipidemia, cardiovascular risks, hypertension and type 2 diabetes mellitus and has recognized as one of the most serious public health problems (Barness et al., 2007).

Excessive intake of fatty acids leads to an accumulation of triglyceride in many tissues, particularly in the fat tissue, in which lipolysis is increased. The increased levels of fatty acids in the circulatory system to facilitate the uptake of fatty acids in peripheral tissue through the induction of fatty acid binding and transport proteins (e.g., FABP and CD36) (Atshaves et al., 2010). The exaggerated availability and deposition of free fatty acids induce lipotoxicity and insulin resistance in peripheral tissues (Samuel et al., 2010). Furthermore, a high concentration of free fatty acids contributes to triglyceride accumulation in the liver. Prolonged and repeated accumulation of triglyceride in the liver increases the possibility of inflammation, hepatocellular necrosis, and fibrosis (Farrell and Larter, 2006). In addition, obesity aggravates the course of many primary renal diseases such as glomerulonephritis and also impairs renal function (Guebre-Egziabher et al., 2013).

Numerous drugs have been approved for the treatment of obesity; however, most of them have been withdrawn from the market because of their serious adverse effects, leaving only Orlistat, a lipase inhibitor (Powell et al., 2011). Therefore, many studies have been conducted to find and develop the new anti-obesity drugs, or dietary supplements through the use of medicinal plants that could minimize the side effects (Yun, 2010 and Lim et al., 2012).

Garcinia gummi-gutta (L.) Roxb. or the Malabar tamarind, commonly known by its previous scientific name Garcinia Cambogia (Gaertn.) Desr. (Clusiaceae), is native to Southeastern Asia. The fruit rind is
commonly used as a food preservative, flavoring agent or food-bulking agent (Roy et al., 2003), and as a traditional remedy to treat constipation, piles, rheumatism, edema, irregular menstruation and intestinal parasites in many Asian countries (Tharachand and Avadhani, 2013). Earlier phytochemical reports on the plant led to the isolation of various organic acids, benzophenones (Kumar et al., 2009) and xanthones (Iinuma et al., 1998) as major constituents and numerous scientific studies have indicated biological activity such as anti-obesity (Kim et al., 2008), hypolipidaemic (Altiner et al., 2012) and anticancer activity (Mazzio and Soliman, 2009) amongst numerous others.

Hypericum Perforatum, also called as St. John’s wort (SJW) is distributed in Europe, Asia, North Africa and North America. Hypericum Perforatum has been known for a long time for its putative medicinal properties including wound-healing (Ozturk et al., 2007), anti-inflammatory (Sosa et al., 2007), diuretic, antibiotic and antiviral (Medina et al., 2006), antidepressant (Chatterjee et al., 1998) and nootropic activity (Kumar et al., 2000). Principle constituents reported from SJW include the naphthodianthrones hypericin and pseudohypericin, a broad range of flavonoids, including quercetin, quercitrin, Amentoflavone and Hyperin, the phloroglucinols hyperforin and adhyperforin, essential oils and xanthones (Nahrstedt and Butterweck, 1997). Flavonoids like quercetin have proved antidiabetic potent (Coskun et al., 2005).

The present study was carried out to investigate the effect of Garcinia Cambogia and H. Perforatum extracts on Obesity in male rats.

Materials and Methods

Materials

Plant:

Dried leaves of Garcinia Cambogia and H. Perforatum were purchased from Haraz market for Herbs and Medicinal Plants, Cairo, Egypt.
Rats:

Thirty-five male albino rats (Sprague-Dawley strain) weighting 160±5 g were obtained from the Laboratory Animal Colony, Helwan, Egypt. The rats were kept under controlled hygienic conditions in plastic cages and fed on the basal diet for one week before starting the experiment.

Biochemical Kits:

Biochemical kits were obtained from Gama Trade Company, Dokki, Egypt.

Methods:

Preparation of the basal diet:

The basal diet was prepared according to the recommended dietary allowances for rats (American Institute of Nutrition, AIN) adjusted by Reeves et al., (1993). Basal diet consisted of 14 % casein, 10 % sucrose, 5 % corn oil, 0.25% choline chloride, 1% vitamin mixture (Campbell,1963), 3.5 % salt mixture (Hegested et al., 1941), 5% fiber and the remainder were corn starch up to 100 %.

Preparation of plants extract:

Leaves of *Garcinia Cambogia* and *H. Perforatum* were finely grounded into a fine powder using a mechanical grinder. Each dried plant (10 g) was extracted twice with 100 ml of 50% methanol in distilled water. The pooled extracts were filtered and concentrated at 40 ° C using a rotary evaporator under low pressure. The residue was freeze-dried in a lyophilizer and stored at –20°C until used (Kanchana and Nuanno, 2012).

Induction of obesity:

Experimental obesity was induced by feeding rats for 6 weeks on the high fat diet, which supplies 45% calories from fat (lard). A 4- to 6-week HFD feeding is sufficient to induce obesity, according to the method of (Bhatt et al., 2006). This model in rats resembles closely the reality of obesity in human.
Experiment and grouping of rats:

Thirty-five mature male Sprague-Dawley rats were housed in a well-ventilated animal room under controlled hygienic conditions of 24°C temperature, 50% relative humidity, and 12 h light/12 h dark cycles. After acclimatization, rats were randomized into 5 groups of 7 rats each. Group (1) was fed on basal diet and kept as a normal control, while the other four groups were fed on a high-fat diet containing 45% fat from hog fat (lard) for 6 weeks to induce obesity. Group (2) was left as a positive control (obese) and rats of groups (3), (4) and (5) were orally administered the extract of *Garcinia Cambogia* and *H. Perforatum* and their mixtures in a dose of 400 mg/kg B.wts., respectively, once daily for 4 weeks. At the end of the experiment, B.wts of rats was recorded, and rats were then euthanized by prolonged exposure to ether anesthetic. The abdomen was opened, and body fats, including mesenteric, visceral, epididymal and retroperitoneal fats were carefully dissected out and total fat mass was weighed. The adiposity index (Ad. I) was calculated by dividing total body fat mass by B.wts. and multiplied by 100 (Ad. I = fat weight [F.wt]/B.wt × 100) as described by Pichon *et al.*, (2006). Blood samples were collected for serum biochemical analyses. Liver and kidneys of the sacrificed rats were preserved in 10% formalin solution till processed for histopathological examination.

Biochemical analyses:

Serum liver enzymes aspartate and alanine aminotransferase (AST and ALT) were chemically determined according to (Bergmeyer *et al.*, 1978) and alkaline phosphatase (ALP) was estimated according to (Roy, 1970). Serum total cholesterol was calorimetrically determined according to (Richmond, 1973) and triglycerides were estimated according to (Friedewald *et al.*, 1972). Atherogenic index (Kumari *et al.*, 1995) and high-density lipoprotein cholesterol (HDL) (Richmond, 1973) was chemically determined using specific diagnostic kits and measured using a spectrophotometer. Low-density lipoprotein (LDL) cholesterol was calculated according to Friedewald *et al.*, (1972). Blood urea nitrogen was determined using biomeriux kits according to the method of (Patton and
Effect of Garcinia Cambogia and St. John’s Wort (Hypericum perforatum) Extracts on Obesity

Crouch, 1977). Serum uric acid was determined using the enzymatic colorimetric method as described by (Fossati et al., 1980). Serum creatinine concentrations were colorimetrically determined by Jaffe reaction, (Husdan and Rapoport, 1968). Concentrations of thyroxin (T4) and insulin were estimated by specific antibody radioimmunoassay kits according to the methods described by (Patrono and Peskar, 1987) and (Yallow and Bauman, 1983), respectively. Leptin was measured using enzyme-linked immunosorbent assay (ELISA) according to (Xiong et al., 2010).

Histopathological examination:-

Liver and kidneys of the sacrificed rats were taken and immersed in 10% formalin solution. The fixed specimens were then trimmed, washed and dehydrated in ascending grades of alcohol. Specimens were then cleared in xylol, embedded in paraffin, sectioned at 4-6 microns thickness and stained with Haematoxylin and Eosin stain for histopathological examination as described by Carleton, (1979).

Statistical analysis:

Statistical analysis was carried out using Statistical Package for the Social Sciences (SPSS) for Windows, version 20 (SPSS Inc., Chicago, IL, USA). Collected data were presented as a mean± standard deviation (SD). Analysis of Variance (ANOVA) test was used for determining the significances among different groups according to Armitage et al., (2002). All differences were considered significant if P < 0.05.

Results

Feeding of rats on HFD for 6 weeks significantly (P < 0.05) increased B.wt., body fat mass weight (F.wt) and Ad. I when compared to negative control rats fed on the basal diet. Oral administration of Garcinia Cambogia, H. Perforatum and mixture of both herbs in a dose of 400 mg/kg B.wt., given to obese rats for 4 weeks induced significant decreases in B.wt, F.wt, and Ad.I when compared to the positive control group as shown in Table 1.
Table (1): The effects of alcoholic extracts of *Garcinia Cambogia, H. Perforatum* and mixture of both herbs on body weight (B.wt), fats weight (F.wt) and adiposity index (Ad.I) in obese rats.

<table>
<thead>
<tr>
<th>Groups</th>
<th>B. wt (g)</th>
<th>F. wt (g)</th>
<th>Ad. I (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.1 Negative control (Normal rats)</td>
<td>200.0±4.4c</td>
<td>5.58±0.12c</td>
<td>2.79±0.10d</td>
</tr>
<tr>
<td>G.2 Positive control (Obese rats)</td>
<td>295.21±4.5a</td>
<td>14.55±0.22a</td>
<td>4.93±0.15a</td>
</tr>
<tr>
<td>G.3 Garcinia Cambogia (400 mg/kg b.wt.)</td>
<td>240.32±1.2b</td>
<td>7.34±0.13b</td>
<td>3.05±0.14b</td>
</tr>
<tr>
<td>G.4 H. Perforatum (400 mg/kg b.wt.)</td>
<td>245.22±2.5b</td>
<td>7.60±0.10b</td>
<td>3.19±0.12b</td>
</tr>
<tr>
<td>G.5 Garcinia Cambogia (200 mg/kg b.wt.)+</td>
<td>235.45±1.5bc</td>
<td>6.81±0.10c</td>
<td>2.89±0.18c</td>
</tr>
<tr>
<td>H. Perforatum (200 mg/kg b.wt.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are presented as means ± standard deviation, (n = 7 for each group) Values with different superscripts within the column are significantly different at P< 0.05. Values with similar or partially similar superscripts are non-significant.

Rats fed on HFD for 6 weeks had significant (P < 0.05) increases in serum levels of liver enzymes AST, ALT, and ALP when compared with negative control rats. Alcoholic extracts of *Garcinia Cambogia, H. Perforatum* and mixture of both herbs in a dose of 400 mg/kg B.wt., when orally given to obese rats significantly (P < 0.05) lowered the highest serum levels of AST, ALT and ALP enzymes when compared to the positive control group, as illustrated in Table 2.

Table (2): The effects of alcoholic extracts of *Garcinia Cambogia, H. Perforatum* and mixture of both herbs on serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) in obese rats.

<table>
<thead>
<tr>
<th>Groups</th>
<th>AST (U/L)</th>
<th>ALT (U/L)</th>
<th>ALP (U/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.1 Negative control (Normal rats)</td>
<td>63.62±1.8c</td>
<td>37.15±1.6c</td>
<td>86.59±1.9c</td>
</tr>
<tr>
<td>G.2 Positive control (Obese rats)</td>
<td>92.45±2.1a</td>
<td>60.57±2.4a</td>
<td>118.41±1.2a</td>
</tr>
<tr>
<td>G.3 Garcinia Cambogia (400 mg/kg b.wt.)</td>
<td>70.83±2.1b</td>
<td>45.78±2.8b</td>
<td>96.32±2.8b</td>
</tr>
<tr>
<td>G.4 H. Perforatum (400 mg/kg b.wt.)</td>
<td>71.65±2.3b</td>
<td>46.32±2.6b</td>
<td>99.71±2.5b</td>
</tr>
<tr>
<td>G.5 Garcinia Cambogia (200 mg/kg b.wt.)+</td>
<td>63.98±2.4c</td>
<td>39.12±2.2c</td>
<td>88.53±2.2c</td>
</tr>
<tr>
<td>H. Perforatum (200 mg/kg b.wt.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data are presented as means ± standard deviation, (n = 7 for each group) Values with different superscripts within the column are significantly different at P< 0.05. Values with similar or partially similar superscripts are non-significant.

As demonstrated in Table 3, feeding of rats on HFD for 6 weeks produced significant (P < 0.05) increases in serum levels of TC and TG when compared to rats fed on the basal diet. *Garcinia Cambogia, H. Perforatum* and mixture of both herbs in a dose of 400 mg kg B.wt., when given orally to obese rats significantly lowered the high levels of serum TC and TG, when compared to the positive control group.

Table (3): The effects of alcoholic extracts of *Garcinia Cambogia, H. Perforatum* and mixture of both herbs on serum levels of total cholesterol (TC) and triglycerides(TG) in obese rats.

<table>
<thead>
<tr>
<th>Groups</th>
<th>TC (mg/dL)</th>
<th>TG (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.1 Negative control (Normal rats)</td>
<td>101.98 ± 1.56 b</td>
<td>55.43 ± 1.5 b</td>
</tr>
<tr>
<td>G.2 Positive control (Obese rats)</td>
<td>119.95 ± 3.95 a</td>
<td>70.32 ± 1.9 a</td>
</tr>
<tr>
<td>G.3 Garcinia Cambogia (400 mg/kg b.wt.)</td>
<td>104.26 ± 4.43 b</td>
<td>59.85 ± 1.4 b</td>
</tr>
<tr>
<td>G.4 H. Perforatum (400 mg/kg b.wt.)</td>
<td>104.92 ± 5.45 b</td>
<td>60.31 ± 1.1 b</td>
</tr>
<tr>
<td>G.5 Garcinia Cambogia (200 mg/kg b.wt.)+ H.</td>
<td>100.62 ± 4.34 b</td>
<td>57.50 ± 1.2 b</td>
</tr>
<tr>
<td>Perforatum (200 mg/kg b.wt.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are presented as means ± standard deviation, (n = 7 for each group) Values with different superscripts within the column are significantly different at P< 0.05. Values with similar or partially similar superscripts are non-significant.

Feeding of rats on HFD for 6 weeks significantly (P <0.05) decreased serum HDL and increased both LDL, VLDL, and At. I, when compared to negative control rats. Oral administration of *Garcinia Cambogia, H. Perforatum* and mixture of both herbs in a dose of 400 mg/kg B.wt., to obese rats induced a significant (P <0.05) increase in serum HDL and decreased LDL, VLDL, and At. I, when compared with the positive control groups as depicted in Table 4.
Table (4): The effects of alcoholic extracts of Garcinia Cambogia, H. Perforatum and mixture of both herbs on serum levels of lipoprotein fractions (HDL-c, LDL-c, and VLDL-c) and At. I in obese rats.

<table>
<thead>
<tr>
<th>At. I</th>
<th>LDL-c/HDL-c</th>
<th>VLDL-c (mg/dL)</th>
<th>LDL-c (mg/dL)</th>
<th>HDL-c (mg/dL)</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.689</td>
<td>11.09± 1.9 b</td>
<td>37.07± 1.6 c</td>
<td>53.82± 1.8 a</td>
<td>G.1 Negative control (Normal rats)</td>
<td></td>
</tr>
<tr>
<td>1.316</td>
<td>14.06± 3.7 a</td>
<td>60.16± 1.4 a</td>
<td>45.73± 2.1 b</td>
<td>G.2 Positive control (Obese rats)</td>
<td></td>
</tr>
<tr>
<td>0.776</td>
<td>11.97± 1.5 b</td>
<td>40.34± 1.8 b</td>
<td>51.95± 1.3 b</td>
<td>G.3 Garcinia Cambogia (400 mg/kg b.wt.)</td>
<td></td>
</tr>
<tr>
<td>0.817</td>
<td>12.06± 2.8 b</td>
<td>41.76± 1.2 b</td>
<td>51.10± 2.1 b</td>
<td>G.4 H. Perforatum (400 mg/kg b.wt.)</td>
<td></td>
</tr>
<tr>
<td>0.685</td>
<td>11.50± 1.2 b</td>
<td>36.22± 1.6 c</td>
<td>52.90± 2.4 b</td>
<td>G.5 Garcinia Cambogia (200 mg/kg b.wt.)+ H. Perforatum (200 mg/kg b.wt.)</td>
<td></td>
</tr>
</tbody>
</table>

Data are presented as means ± standard deviation, (n = 7 for each group) Values with different superscripts within the column are significantly different at P< 0.05. Values with similar or partially similar superscripts are non-significant.

Feeding rats on a high-fat -diet (HFD) for 6 weeks caused significant (P < 0.05) increases in urea nitrogen, uric acid, and creatinine compared to the negative control group. Oral administration of an alcoholic extract of Garcinia Cambogia, H. Perforatum and mixture of both herbs in a dose of 400 mg/kg B.wt., to obese rats for 4 weeks significantly (P < 0.05) decreased the elevated serum levels of urea nitrogen uric acid and creatinine when compared with the positive control group, (Table 5).
Effect of Garcinia Cambogia and St. John’s Wort (Hypericum perforatum) Extracts on Obesity

Table (5): The effects of alcoholic extracts of Garcinia Cambogia, H. Perforatum and mixture of both herbs on serum levels of blood urea nitrogen (BUN), uric acid (UA) and creatinine (Cr) concentrations in obese rats.

<table>
<thead>
<tr>
<th></th>
<th>Cr (mg/dL)</th>
<th>UA (mg/dL)</th>
<th>BUN (mg/dL)</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.1 Negative control (Normal rats)</td>
<td>1.25 ± 0.02 b</td>
<td>1.22 ± 0.05 c</td>
<td>15.9 ± 0.41 c</td>
<td></td>
</tr>
<tr>
<td>G.2 Positive control (Obese rats)</td>
<td>1.39 ± 0.02 a</td>
<td>2.28 ± 0.02 a</td>
<td>24.2 ± 0.63 a</td>
<td></td>
</tr>
<tr>
<td>G.3 Garcinia Cambogia (400 mg/kg b.wt.)</td>
<td>1.28 ± 0.01 b</td>
<td>1.38 ± 0.05 b</td>
<td>19.8 ± 0.31 b</td>
<td></td>
</tr>
<tr>
<td>G.4 H. Perforatum (400 mg/kg b.wt.)</td>
<td>1.29 ± 0.03 b</td>
<td>1.40 ± 0.05 b</td>
<td>20.5 ± 0.25 b</td>
<td></td>
</tr>
<tr>
<td>G.5 Garcinia Cambogia (200 mg/kg b.wt.)+ H. Perforatum (200 mg/kg b.wt.)</td>
<td>1.27 ± 0.03 b</td>
<td>1.28 ± 0.07 c</td>
<td>17.3 ± 0.11 c</td>
<td></td>
</tr>
</tbody>
</table>

Data are presented as means ± standard deviation, (n = 7 for each group). Values with different superscripts within the column are significantly different at P< 0.05. Values with similar or partially similar superscripts are non-significant.

Data in Table 6 showed that rats fed on HFD for 6 weeks had a significant (P < 0.05) increase in leptin hormone and decreases in both T4 and insulin serum levels when compared to the negative control group. Alcoholic extract of Garcinia Cambogia, H. Perforatum and mixture of both herbs when orally given in a dose of 400 mg/kg B.wt., to obese rats for 4 weeks significantly (P < 0.05) decreased leptin hormone and increased T4 and insulin serum levels when compared with the positive control group.

Table (6): The effects of alcoholic extracts of Garcinia Cambogia, H. Perforatum and mixture of both herbs on serum levels of free thyroxine (T4), insulin and leptin hormones in obese rats.

<table>
<thead>
<tr>
<th></th>
<th>Leptin (ng/ml)</th>
<th>Insulin (µU/ml)</th>
<th>Free T4 (µg/dL)</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.1 Negative control (Normal rats)</td>
<td>30.0 ± 1.2 b</td>
<td>69.49 ± 0.86 a</td>
<td>4.50 ± 0.09 a</td>
<td></td>
</tr>
<tr>
<td>G.2 Positive control (Obese rats)</td>
<td>42.7 ± 1.4 a</td>
<td>44.58 ± 1.11 b</td>
<td>2.15 ± 0.03 c</td>
<td></td>
</tr>
<tr>
<td>G.3 Garcinia Cambogia (400 mg/kg b.wt.)</td>
<td>33.6 ± 0.9 b</td>
<td>66.35 ± 2.16 a</td>
<td>3.65 ± 1.79 b</td>
<td></td>
</tr>
<tr>
<td>G.4 H. Perforatum (400 mg/kg b.wt.)</td>
<td>33.9 ± 1.3 b</td>
<td>66.16 ± 1.78 a</td>
<td>3.77 ± 1.32 b</td>
<td></td>
</tr>
<tr>
<td>G.5 Garcinia Cambogia (200 mg/kg b.wt.)+ H. Perforatum (200 mg/kg b.wt.)</td>
<td>31.4 ± 1.9 b</td>
<td>68.15 ± 1.79 a</td>
<td>4.25 ± 1.54 a</td>
<td></td>
</tr>
</tbody>
</table>
Data are presented as means ± standard deviation, (n = 7 for each group) Values with different superscripts within the column are significantly different at P< 0.05. Values with similar or partially similar superscripts are non-significant.

Histopathological study:

Examination of the liver of normal rats fed on basal diet showed the normal histological structure of hepatic lobules (Photo.1). Liver of obese rats fed on a high-fat diet revealed marked congestion of hepatic central vein (Photo.2) associated with hyperplasia of the bile duct and leucocytic infiltration (Photo. 3). Oral administrations of *Garcinia Cambogia* extract at 400 mg/kg B.wt., for 4 weeks to obese rats showed mild congestion of central vein and hepatic sinusoids (Photo.4). In obese rats orally given 400 mg/kg B.wt., of *H. Perforatum* extract, the examination of liver sections showed only mild congestion of central vein (Photo.5). Oral administrations of the mixture of both herbs showed the normal histological appearance of the hepatocytes and a low number of inflammatory cells (Photo.6).

The kidney of normal rats fed on basal diet showed the normal histological architecture of renal parenchyma (Photo.7). Examination of kidneys of obese rats showed marked congestion of glomerular tufts and renal blood vessels (Photo. 8). Kidneys of obese rats given *Garcinia Cambogia* extract at 400 mg/kg B.wt., for 4 weeks showed slight congestion of glomerular tufts and renal blood vessel (Photo.9). Oral administrations of *H. Perforatum* extract at 400 mg/kg B.wt., for 4 weeks to obese rats showed mild tubular epithelial degeneration and no necrosis was observed in epithelial cells of the proximal tubules and no tubular cast(Photo.10). Kidneys of obese rats given the mixture of both herbs (400mg/kg B.wt.) showed the normal histological structure of renal parenchyma (Photo.11).
Effect of *Garcinia Cambogia* and *St. John’s Wort (Hypericum perforatum)* Extracts on Obesity

Photo. (1): Liver of a control rat showing normal histological structure of hepatic Lobules. (H & E X400)

Photo. (2): Liver of an obese (non-treated) rat showing marked congestion of hepatic central veins (Arrows). (H & E X400)
Photo. (3): Liver of an obese (non-treated) rat showing hyperplasia of the bile duct (Arrows) and infiltration with leucocytes (Arrow). (H & E X400)

Photo. (4): Liver of an obese given Garcinia Cambogia extract at 400 mg/kg B.wt., for 4 weeks to obese rats showed mild congestion of central vein and hepatic sinusoids (H & E X400)
Effect of Garcinia Cambogia and St. John’s Wort (Hypericum perforatum) Extracts on Obesity

Photo. (5): Liver of an obese rat orally given H. Perforatum extract in a dose of 400 mg/kg B.wt., for 4 weeks the examination of liver sections showed only mild congestion of central vein (Arrow) (H & E X400).

Photo. (6): Liver of an obese rat orally given Mixture of both herbs showed the normal histological appearance of the hepatocytes and a low number of inflammatory cells.(H & E X400).
Photo. (7): Kidney of a control rat showing normal histological structure of renal Parenchyma (H & E X400).

Photo. (8): Kidney of an obese rat showing marked congestion of glomerular tufts and renal blood vessels (Arrows) (H & E X400).
Effect of Garcinia Cambogia and St. John’s Wort (Hypericum perforatum) Extracts on Obesity

Photo. (9): Kidney of an obese rat given Garcinia Cambogia extract at 400 mg/kg B.wt., for 4 weeks showing slight congestion of glomerular tufts and renal blood vessel (Arrows) (H & E X400).

Photo. (10): Kidney of an obese rat given Garcinia Cambogia extract at 400 mg/kg B.wt., for 4 weeks showing mild tubular epithelial degeneration and no necrosis was observed in epithelial cells of the proximal tubules and no tubular cast (Arrows) (H & E X400).
Discussion

The present study aimed to assess some pharmacological effects of *Garcinia Cambogia* and St. John's Wort (*Hypericum perforatum*) leaf extracts obese male rats. Obesity has become a major public health problem worldwide. The concerns associated with obesity are related to numerous symptoms of metabolic syndrome, including hypertension, dyslipidemia, insulin resistance, and glucose intolerance. A variety of approaches could be used to prevent and control obesity in human. Since perfect cure or prevention for obesity are yet to be found and most of the anti-obesity medications could have side effects, there has been growing interests in investigating the discovery of new naturally occurring materials (*Monteiro et al., 2008*). In this study, obesity was induced by feeding rats on HFD for 6 weeks. This obese rat model closely resembles the reality of obesity in humans (*Bhatt et al., 2006*). However, the experimental obesity could be also induced in rats and mice by other methods such as feeding on high fructose diet (*Qin et al., 2004*), damage in the anterior hypothalamus and genetically induced obesity.

Results of the present study showed that HFD feeding effectively induced obesity.

Photo. (11): Kidney of an obese given Mixture of both herbs at 400 mg/kg b.wt. for 4 weeks showing the normal histological structure of renal parenchyma (H & E X400).
In rats, because it facilitates the development of a positive energy balance leading to an increase in visceral fat deposition and this led to abdominal obesity as evidenced by a significance increment of body weight, fats weight (F.wt) and adiposity index in the control positive group compared to the control negative group. Our results were in the same line with Ji et al., (2005), Xu et al., (2008) and Melega et al., (2013). Gopinathan and Naveenraj, (2014) reported that rats fed HFD were consumed considerably more amount of fat than the control rats throughout the experiment. So their calorie intake was increased and they showed an increase in perirenal visceral adipose tissue mass, suggesting that the excess energy led to the buildup of adiposity. This is also the source for increasing the body weight.

Our results showed a significant decrease in body weight, fats weight (F.wt) and adiposity index accumulation from oral administration of either Garcinia Cambogia, Hypericum perforatum and the mixture of both herbs compared to the control positive group. These results agreed with the findings of Gopinathan and Naveenraj, (2014) who concluded that Garcinia, reduces food consumption probably by diverting fatty acids and carbohydrates that would have become fat in the liver into hepatic glycogen. This metabolic alteration may send a signal to the brain that results in rising serotonin level concomitant with a reduced appetite. Moreover, using Garcinia causes dispersion of fat which facilitates the action of lipase on adipose tissue (Roy et al., 2007), suppresses body fat accumulation (Saito et al., 2005), inhibit cytoplasmic lipid accumulation and regulates adipogenesis, so eliminates body fat. Mi-Kyoung et al., (2014) reported that several isoflavone constituents are unique phytoestrogens, which like estradiol, affect the serotonergic system, inhibiting serotonin re-uptake and thereby increasing the levels of serotonin in synaptic clefts. This enhances satiety and resembles the action of sibutramine, but naturally. The mixture of both herbs showed a powerful effect than each herb alone but no available literature could be obtained concerning the effect of both herbs on body weight, fats weight (F.wt) and adiposity index accumulation.
The results showed that rats fed a high-fat diet had significant (p<0.05) increase in the level of serum liver enzymes (AST, ALT, and ALP), as compared to the normal control rats. The profound increase in the levels of biomarker enzymes (AST, ALT, and ALP) indicates an impaired liver function. In obese condition, the liver is bombarded by the free fatty acids that pour out of the adipose tissues into the portal blood. This can directly cause inflammation within the liver cells, which then release further pro-inflammatory cytokines, leading to liver injury and affecting the integrity of liver cells (Fielding and Frayn, 2000). Adeniran et al., (2013) reported that the mechanism for increasing the liver enzymes include cell membrane disruption at high concentration, mitochondrial dysfunction, toxin formation, and activation and inhibition of key steps in the regulation of metabolism. Oral administration of GarciniaCambogia, Hypericumperforatum and the mixture of both herbs extract to obese rats for 4 weeks caused significant reductions of the elevated liver enzymes compared to the positive control group. A similar result was observed in the anti-obesity activity of GarciniaCambogia reported by Gopinathan and Naveenraj, (2014) and Mohammad et al., (2016) who concluded that the mechanism of hepatoprotection of Hypericumperforatum was assumed to be through inhibition of cytochrome P450 enzymes activity in liver microsomes. The hepatoprotective activity was also supported by histopathological studies of liver tissue.

Rats fed on HFD to induce obesity caused a significant elevation in the levels of lipid constituents in the serum such as total cholesterol, serum triglycerides, LDL cholesterol, and VLDL cholesterol and decreased the HDL cholesterol level compared to rats fed on the basal diet. The elevated levels of serum lipid constituents increase the risk of atherosclerosis and coronary heart disease. Co-treatment of GarciniaCambogia and H.perforatum leaf extracts showed a significant decrease in the levels of atherogenic agents like serum cholesterol, triglycerides, LDL and VLDL cholesterol along with significant increase in the protective agent, serum HDL cholesterol level. This trend was reflected in the LDL/HDL ratio. LDL/HDL ratio was markedly higher in obese rats than healthy control rats.
After the treatment with herb extracts the ratio was brought back to normalcy in the ratio.

HDL cholesterol is responsible for the mobilization of cholesterol from peripheral cells to the liver. Based on the results from the present study it can be considered that *Garcinia Cambogia* and *H. perforatum* leaf extracts are having the cardioprotective efficacy. Total cholesterol and triglycerides are defined as the main risk factor for dyslipidemia (*Paccaud et al.*, 2000) and the levels of both total cholesterol and triglycerides were significantly increased in HFD fed obese animals. After the treatment with plant extracts, the obese animals showed a significant decrease in the levels of lipid profiles. This result indicates the antihyperlipidemic potential of *Garcinia Cambogia* and *H. perforatum* leaf extracts. Further, lipoproteins such as HDL, LDL and VLDL showed a profound increment in their production in obese rats, which were brought back to normal levels by the treatment of *Garcinia Cambogia* and *H. perforatum* leaf extracts.

Co-treatment with *Garcinia Cambogia* extract maintained the activity of lipoprotein lipase of near normalcy thereby preventing a rise of VLDL and LDL levels in the plasma (*Mahendran and Shyamala.*, 2001). *Garcinia Cambogia* which contain the principle organic acid (−)-erythro-L-s-hydroxy citric acid is an effective anti-lipogenic agent (*Sawada and Harumichi*, 1997). *Kamal et al.*, (2011) reported that *Garcinia Cambogia* has an inhibiting effect of hydroxy citric acid on ATP citrate lyase, an enzyme which catalyzes the extramitochondrial cleavage of citrate to oxaloacetate and acetyl COA. The produced acetyl COA is used in fatty acid synthesis, TC, and TG synthesis. The current data suggested that *Garcinia* has hypolipidemic action causing significant hypocholesterolemic and hypotriglyceridemic effect. Similar results were reported by *Gopinathan and Naveenraj*, (2014). *Habibi et al.*, (2008) studied the therapeutic effects of total ethanolic *Hypericum perforatum* (EHP) on the lipid profiles of hyperlipidemic rats and concluded that EHP significantly reduced TCH, TG, and LDL. Also in the study conducted by *Zou et al.*, (2005) and *Asgary et al.*, (2012), who reported that EHP reduced TCH in hyperlipidemic rats and able to increase HDL-CH levels. In addition, it has
been previously shown that the flavonoid components of H. perforatum can increase HDL-CH levels by augmenting the synthesis of apolipoprotein A-I and was able to reduce TG levels. They speculated that this therapeutic effect occurred through the augmentation of vascular wall resistance, which prevents cholesterol penetration into the atherogenic lipoprotein composition (Khushbactova et al., 1989).

In the present study, the level of serum urea, creatinine, and uric acid were elevated in the HFD induced obese rats compared with healthy rats. Regarding levels of urea, creatinine and uric acid of positive control group. Matsuda,(1999) ; Aguila and Mandarim-De-Lacerda (2003) stated that HFD had adverse effects on the kidney. In addition, Chagnac et al., (2000) reported that renal structural and functional adaptations occur in consequence of obesity in experimental animals and humans such as increased glomerular filtration rate, increased renal blood flow, and renal hypertrophy. Roberts et al., (2006) and Hamidian et al., (2009) reported that consumption of HFD which result in metabolic syndrome marked by obesity, hyperlipidemia and associated with oxidative stress and nitric oxide inactivation by reactive oxygen species (ROS) and diminish NO bioavailability] which leading to renal dysfunction, characterizing by high level of creatinine and blood urea nitrogen.

Treatment with Garcinia Cambogia and H. perforatum leaf extracts on kidney function significantly decreased urea, creatinine, and uric acid levels. Thus the herb extract proved their anti- hyperuricemia effect. Garcinia treatment enhances renal function as a result of hydroxycitric acid (HCA-SX) derived from Garcinia Cambogia (HCA-SX, Super Citric Max) which attenuated the increased oxidative stress biomarker through reducing lipid peroxidation (MDA) and declining lipid profiles and level of oxidized LDL which generally improved kidney function (Asghar et al.,2007). Concerning the effect of H.perforatum leaf extraction kidney function, Hammer et al., (2007), concluded that the bioactive constituents of H.perforatum extracts are complex and include many different classes of chemicals. Some classes of constituents present within H.perforatum are potent antioxidants which were effective in lowering the blood urea and uric
acid, thereby maintaining the nitrogen balance. (Benedí et al., (2004), Lu et al., (2004) and Medina et al., (2006). The nephroprotective activity was also supported by histopathological studies of kidney tissue.

High-fat fed animals showed a significant increase in T4 when compared to normal diet fed animals. This result was agreed with Kuroshima et al.,(1971) who study the effects of a HFD for 4 to 5 weeks on thyroid activity and found that HFD caused a marked hypertrophy of brown and white adipose tissue, while there was a significant decrease in the T4 in all treated groups compared to the positive control group available literature could be obtained concerning the effect of Garcinia Cambogia, Hypericum perforatum and the mixture of both herbs extract on the level of T4 but its effect on increasing thyroid hormones could be indirect result of their effect on lipids metabolism.

Concerning insulin hormone, it was noticed that the rats fed on a high-fat diet (positive control) had significantly lower level of insulin than that of normal rats fed on basal diet. This finding agrees with that reported by (Huang et al., 2004) who concluded that high-fat diet can result in impaired pancreatic function of insulin secretion in rats. Oral administration of Garcinia Cambogia extract to obese rats (fed a high-fat diet) significantly increased serum insulin level. This result was similar to that reported by (Kim et al., 2008) who concluded that Garcinia Cambogia significantly improved the hyperglycemia, in HFD, by declining insulin resistance, in this concern Garcinia Cambogia could be used for management of diabetes, by increasing metabolic pathway via rising glucose oxidation through improving insulin action; also Garcinia Cambogia promotes glycogenesis and lipid oxidation (Kamal et al., 2011). Rats treated by administration of H. perforatum extract showed a significant increase in the level of serum insulin. The possible mechanism by which H. perforatum brings about its hypoglycemic action in diabetic rats may be by potentiating the insulin effect of plasma by increasing either the pancreatic secretion of insulin from the existing beta cells or by its release from the bound form (Arokiyaraj et al., 2011). H. perforatum is reported to contain several phytochemical constituents such as rutin, flavonoids including...
quercetin, isoquercitrin (Can et al., 2011). For example, rutin has been reported to enhance insulin release and decrease blood glucose level in diabetic animals (Kamalakkannan and Prince, 2006).

With regard to leptin hormone, leptin is produced primarily by adipocytes, and its serum levels reflect the amount of energy stored in the adipose tissue and are proportional to the overall adipose mass in both mice and humans (Blancas-Flores et al., 2010). The present study showed that obese rats had an increased level of leptin hormone as compared to the normal control rats. This finding agrees with that reported by Huang et al., (2004) who found that high-fat diet increased serum leptin level in the rats. Oral administration of Garcinia Cambogia and H. perforatum leaf extracts to obese rats significantly decreased serum leptin level. This result agrees with that of Hayamizu et al., (2003) who reported that Garcinia Cambogia decreased serum leptin level and depressed appetite in obese rats. The authors suggested that G. Cambogia extract efficiently improved glucose metabolism and displayed leptin-like activity. Similar results were reported by Jin-ying et al., (2015) who stated that obese rats treated with H. perforatum had low serum leptin level. This may be due to its anti-obesity acting mechanism which reported for H. perforatum is the quantity of serotonin present within synaptosomes and inhibiting the synaptosomal uptake of serotonin (Husain et al., 2011). This increased level of serotonin reduces the food intake and suppresses the appetite (Hernández-Saavedra et al., 2013).

CONCLUSION

Based on these broad observations, we suggest that high-fat-diet-induced obesity resulted in deleterious effects in kidney and liver tissues. Garcinia Cambogia and H. perforatum leaf extracts administration counteracted the injuries, and ameliorated and/or normalized most of the biochemical parameters. Collectively obesity is associated with metabolic complications, including insulin resistance, dyslipidemia, and cardiovascular disease. When comparing therapies for obesity, both herbs extract have influenced the improvements in amelioration of body weight,
Effect of Garcinia Cambogia and St. John’s Wort (Hypericum perforatum) Extracts on Obesity

levels of lipid profiles, and markers of liver, kidney and cardiac function, as well as insulin resistance. So the plant extracts have a hypolipidemic, renoprotective, hepatoprotective, antioxidant and antiobesity effect.

References

Effect of Garcinia Cambogia and St. John’s Wort (Hypericum perforatum) Extracts on Obesity

تأثير مستخلصات الجارسنيما ونبتة سانت جون على السمنة في ذكور الفئران

نتاج المحايد

أُستهدف هذا البحث دراسة تأثير مستخلصات سائل من الجارسنيما ونبتة سانت جون وخلطهما على السمنة في ذكور الفئران. وتم إجراء التجربة على عدد 35 فئران وزعت إلى 5 مجموعات岂لمنا سبع فئران، ترخت اختبارها لمجموعة ضابطة سامية، وتتم تغذية الفئران الأربع مجموعات الأخرى على علامة عالية في محتواها من الدهان لدورة ستة أسابيع لأحداث بدأ فيها وترخت اختبار المجموعات مجموعه ضابطة موجبة وتم إعطاء الفئران البديلة ظلامة الجارسنيما ونبتة سانت جون وخلطهما بجرعة 500 ملجم/كجم من وزن الجسم على التوالي عن طريق الفم لمدة أربعة أسابيع.

وفي نهاية فترة التجربة تم ذبح الفئران وأخذت عينات من الدم لقياس مستوي إنزيمات الكبد، الكوليسترول، الدهون الثلاثية، والليبروتينات، ووظائف الكلى منها تخطيطات البول، حمض البوليك والكرياتين في السيرم، وكمية الهرمونات الثيروكسين، الأنسولين والليبروتين وجراء الفحص السيمبايولوجي للكلب والكليتين.

وأظهرت نتائج الدراسة أن أثر مستخلصات الجارسنيما ونبتة سانت جون وخلطهما للفئران الصابرة بالبدانة أدأ إلى نقص معنوي في مستوي إنزيمات الكبد، الكوليسترول الكلي، الدهون الثلاثية والكوليسترول منخفض الكثافة مقارنة بالمجموعة الضابطة الموجبة، أدى إلى نقص تركيزات البوليك وحمض البوليك في السيرم، عند الفئران، وكمية الهرمونات الموروثية والأنسيتين ونقص تركيزيرمونان الإسفين، ولاحظ الفحص السيمبايولوجي اختفاء التغييرات الهستوباثولوجية بالكبد والكليتين في الفئران بدون الفئران، ونتيجة هذه الدراسة بأن تناول الجارسنيما ونبتة سانت جون وخلطهما قد يكون مفيدا للمرضى الذين يعانون من البدانة وارتفاع دهون الدم.

الكلمات المفتاحية: جارسنيما، نبتة سان جون، إنزيمات الكبد، وظائف الكلى، وصورة دهون، الدم، الهرمونات، الهستوباثولوجي.